TABLE OF CONTENTS

GENERAL MATHEMATICS FORMULAE 1
PROPERTIES OF GEOMETRIC SHAPES 12

1. NUMBERS 18
1.1 Specific Objectives 18
1.2 Worked Exercise 18
2. MEASUREMENTS 23
2.1 Objectives 23
2.2 Worked Exercise 23
3. VOLUME, CAPACITY AND MASS 31
3.1 Specific Objectives 31
3.2 Worked Exercises 31
4. MONEY 38
4.1 Specific Objectives 38
4.2 Worked Exercise 38
5. TIME, SPEED AND TEMPERATURE 46
5.1 Specific Objectives 46
5.2 Worked Exercise 46
6. GEOMETRY 52
6.1 Specific Objectives 52
7. ALGEBRA 60
7.1 Specific Objectives 60
7.2 Worked Exercise 60
8. TABLES AND GRAPHS 64
8.1 Specific Objectives 64
8.2 Worked Exercise 64
9. SCALE DRAWING 69
9.1 Specific Objectives 69
9.2 Worked Exercise 69
10. RATIO AND PROPORTION 73
10.1 Specific Objectives 73
10.2 Worked Exercise 73

GENERAL MATHEMATICS FORMULAE

Length

The units of length that are used include the following:

- millimetre (mm)
- centimetre (cm)
- decimetre (dm)
- Metre (m)
- Dekametre (Dm)
- Hectometre (Hm)
- Kilometre (Km)

From the illustration:

- $10 \mathrm{~mm}=1 \mathrm{~cm}$
- $10 \mathrm{~cm}=1 \mathrm{dm}$
- $10 \mathrm{dm}=1 \mathrm{~m}$
- $10 \mathrm{~m}=1 \mathrm{Dm}$
- $10 \mathrm{Dm}=1 \mathrm{Hm}$
- $10 \mathrm{Hm}=1 \mathrm{Km}$

The relationship between the units of lengths may be clearly seen if the units are written with a 10 between them.

So to find how many small units are equivalent to another, multiply the number of tens between the units, hence:

- Km 1
- Hm 10
- Dm 100
- M 1000
- dm 10000
- cm 100000
- mm 1000000

Mass

- $1000 \mathrm{~g} \quad=\quad 1 \mathrm{Kg}$
- $1000 \mathrm{Kg}=1$ Tonne
- $1000000 \mathrm{~g}=1$ Tonne

Volume and Capacity

- $1 \mathrm{~cm}^{3} \quad=\quad 1 \mathrm{Ml}$ (millilitre)
- $1000 \mathrm{~cm}^{3}=1 \mathrm{~L}$ (litre)
- $100 \mathrm{~cm}^{3}=1 \mathrm{dl}$ (decilitre)
- $1 \mathrm{~m}^{3} \quad=\quad 1000$ litre
- $1000000 \mathrm{~cm}^{3}=1 \mathrm{~m}^{3}$
- $10 \mathrm{dl} \quad=1$ Litre
- $1000 \mathrm{ml}=1$ Litre

Time

- 60 Seconds $=1$ Minute
- 60 Minutes $=1$ Hour
- 3600 Seconds $=1$ Hour
- 24 Hours $=1$ day
- 7 Days = 1 Week

Area

a) Rectangle

Area $=$ Length x Width
$\mathrm{A}=\mathrm{LXW}$
b) Square

Area $=$ Side x Side
$\mathrm{A}=\mathrm{SxS}$
$\mathrm{A}=\mathrm{S}^{2}$
c) Parallelogram

$\mathrm{A}=$ base x Height
$\mathrm{A}=\mathrm{bxh}$
d) Rhombus

Area $=$ base x height
$\mathrm{A}=\mathrm{bxh}$
e) Triangle

Area $=\frac{1}{2}$ base x height
$\mathrm{A}=\frac{\mathbf{1}}{\mathbf{2}} \mathrm{bxh}$

f) Trapezium

Area $=\underset{\frac{1}{2}}{\frac{1}{2}} \mathrm{x}$ sum of parallel lines x height
$\mathrm{A}=\frac{1}{2}(\mathrm{a}+\mathrm{b}) \times \mathrm{h}$
$A=\frac{1}{2} h(a+b)$
g) Circle, half circle, quarter circle
i) Circle

$$
\begin{aligned}
& \text { Area }=\Pi \times \text { radius } \mathrm{x} \text { radius } \\
& \mathrm{A}=\Pi \times \mathrm{rxr} \\
& \mathrm{~A}=\Pi \mathrm{r}^{2}
\end{aligned}
$$

ii) Half circle

$$
\begin{aligned}
\text { Area } & = \\
\text { A } & =\frac{\Pi r e a ~ o f ~ a ~ f u l l ~ c i r c l e ~}{} \div 2 \\
& =\frac{1}{2} \Pi r^{2} \\
\text { A } & =
\end{aligned}
$$

iii) Quarter circle

$$
\begin{aligned}
& \mathrm{A}=\text { Area of the full circle } \div 4 \\
& \mathrm{~A}=\Pi \mathrm{r}^{2} \div 4 \\
& \mathrm{~A}=\frac{1}{4} \Pi r^{2}
\end{aligned}
$$

Note: $\Pi=\underline{22}$ or 3.14 or $3 \frac{\mathbf{1}}{7}$ 7

Surface Area

a) Cylinder

$$
\begin{aligned}
\mathrm{T} . \mathrm{S} . \mathrm{A} & =\text { Area of circular ends }+ \text { area of the curved surface } \\
& = \\
2 \pi r^{2}+ & \text { Пdh (if closed both ends) } \\
\text { T.S.A } & \left.=\Pi r^{2}+\Pi d h \text { (if open one end }\right) \\
\text { T.S.A } & =\Pi d h \quad \text { (if open both ends/pipe) }
\end{aligned}
$$

b) Cube

T.S.A $=$ Total area of all the six faces

$$
\begin{aligned}
& =6 \times \mathrm{L} \times \mathrm{L} \\
& \left.=6 \mathrm{~L}^{2} \text { (if closed }\right)
\end{aligned}
$$

or
$=5 \mathrm{~L}^{2}$ (if open one end $)$

c) Cuboid

T.S.A $=$ Total area for the six faces

$$
=2(\mathrm{~L} x \mathrm{w})+2(\mathrm{~L} x \mathrm{~h})+2(\mathrm{wxh})
$$

or
$=(\mathrm{L} \times \mathrm{w})+2(\mathrm{~L} x \mathrm{~h})+2(\mathrm{w} \times \mathrm{h})($ if open on top $)$

d) Triangular prism

T.S.A $=$ Area of all the 5 faces of the prism

Volume of cylinder and rectangular shapes

a) Cylinder

Volume $=$ Base area x height

$$
=\Pi r^{2} \mathrm{x} \text { height }
$$

$$
=\Pi r^{2} h
$$

b) Rectangular shape

Volume $=$ Base area x height
$\mathrm{V} \quad=\mathrm{Lxwxh}$
Note: Depending on the cross-section, the volume of any shape / solid is given by.
$\mathrm{V} \quad=$ Area of cross-section x height/length

Perimeter

a) Rectangle

$$
\begin{aligned}
\mathrm{P} & =\text { Length }+ \text { Length }+ \text { Width }+ \text { Width } \\
& =\mathrm{L}+\mathrm{L}+\mathrm{W}+\mathrm{W} \\
& =2 \mathrm{~L}+2 \mathrm{~W} \text { or } 2(\mathrm{~L}+\mathrm{W})
\end{aligned}
$$

b) Square

$$
\begin{aligned}
\mathrm{P} & =\mathrm{L}+\mathrm{L}+\mathrm{L}+\mathrm{L} \\
& =4 \mathrm{~L}
\end{aligned}
$$

c) Circle

Note: Perimeter of a full circle is called circumference
d) Half a circle

Perimeter $=$ circumference + diameter

$$
P=\frac{1}{2} \Pi d+d
$$

Note: For triangles and irregular shapes, JUST ADD THE DISTANCE ALL ROUND.

Expressing area of large shapes

a) Hectare - A shape that measures 100 m by 100 m

Therefore 1ha $=(100 \times 100) \mathrm{m}^{2}$

$$
1 \mathrm{ha}=10000 \mathrm{~m}^{2}
$$

b) Are - a piece / shape that measures 10 m by 10 m

Therefore 1 are $=10 \times 10$

$$
1 \text { are }=100 \mathrm{~m}^{2}
$$

Hence:

$$
1 \mathrm{ha}=10000 \mathrm{~m}^{2}
$$

```
1are = 100m
1ha = 100ares
```


PROPERTIES OF GEOMETRIC SHAPES

General Geometric Shapes

a) Square

- All sides are equal
- Opposite sides are parallel
- Each interior angle is a right angle $\left(90^{\circ}\right)$
- The interior angles total up to 360°
- Diagonals bisect each other at right angles.
- Diagonals measure the same length and bisect interior angles.
b) Rectangle

- Opposite sides are equal
- Each interior angle is 90° and they all add up to 360°
- Diagonals are equal
- Diagonals bisect each other but NOT at right angles

c) Parallelogram

- Opposite sides are equal and parallel
- Opposite angles are equal
- Diagonals bisect each other
- Diagonals are not equal
- Adjacent angles are supplementary (add up to 180°)

d) Rhombus

- All sides are equal
- Opposite sides are parallel
- Opposite angles are equal
- Diagonals bisect each other at 90°
- Diagonals bisect the interior angles

- The sum of the interior angles is 360°
- Has a pair of parallel lines which are not of the same length
- Has a perpendicular height joining the two parallel lines

f) Right-angled triangle (Pythagorean relationship)

a) $\mathrm{H}^{2}=\mathrm{b}^{2}+\mathrm{h}^{2}$
b) $\mathrm{b}^{2}=\mathrm{H}^{2}-\mathrm{h}^{2}$
c) $\mathrm{H}^{2}=\mathrm{H}^{2}-\mathrm{b}^{2}$

Examples of relationships

Base	Height	Hypotenuse
3	4	5
6	8	10
5	12	13
7	24	25
8	15	17
9	40	41

g) Equilateral triangle

- All sides are equal
- All angles are equal
- The sum of interior angles is 180°
- Each angle measures 60°

h) Isosceles triangle

- Only two sides are equal
- Base angles are equal

Properties of Triangles and Parallel Lines

a) Triangle

Exterior angles \& interior angles

- Angles x, y, and z are exterior angles while a, b, and c are interior angles.
- Exterior angles add up to 360° while interior angles add up to 180°.
- Angles $\mathrm{x}, \mathrm{a} ; \mathrm{b}, \mathrm{z}$; and c, y; are adjacent to each other and they add up to 180° (supplementary angles)
b) Parallel Lines and Transversal

a) Angles at a point e.g. $\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}=360^{\circ}$
b) Vertically opposite e.g. $\mathrm{a} / \mathrm{d}, \mathrm{b} / \mathrm{c}, \mathrm{f} / \mathrm{g}$, e/h. They are equal
c) Corresponding angles e.g. b/f, a/e, c/g, d/h. They are equal
d) Alternate angles e.g. c/f, d/e are always equal.
e) Co-interior angles e.g. $\mathrm{c} / \mathrm{e}, \mathrm{d} / \mathrm{f}$, are always equal.
f) Co-interior/allied angles e.g. c/e, d / f are formed by parallel lines. They are supplementary.

c) Speed, Distance and Time

The formulae related to speed, distance and time can be derived from the following triangle.

1. NUMBERS

1.1 Specific Objectives

By the end of this unit, the learner will be able to:

a) Read and write numbers in symbols and words
b) Work out squares and square roots of whole numbers, fractions and decimals
c) Convert fractions to percentages and vice versa
d) Work out problems involving operations on whole numbers, fractions, decimals and combined operations
e) Work out problems involving number sequence of whole numbers, fractions and decimals.

In this section you will need the following hints to solve the exercises:

- Place value of whole numbers
- Total value of whole numbers
- Multiplication of whole numbers/tables
- BODMAS
- LCM and GCD

1.2 Worked Exercise

1. What is four million seventy thousand and five hundred and thirty three?
A. $4,070,353$
B. $4,070,533$
C. $4,007,533$
D. $4,700,533$

Working

Using the place value table, the question can be solved as follows:

Millions	Hundred Thousands	Ten thousands	Thousands	Hundreds	tens	Ones
4	0	7	0	5	3	3

The correct answer is $\mathrm{B}(4070533)$
2. What is the square root of $7 \frac{9}{16}$
A. $7 \frac{3}{4}$
B. $2 \frac{3}{4}$
C. $1 \frac{3}{8}$
D. $\frac{11}{16}$

Working

Step 1: Change the mixed fraction to improper $\frac{121}{16}$ Find the square root of both numerator and denominator.

Step 2: Find the square root of both numerator and denominator

$$
\begin{aligned}
& =\frac{\sqrt{121}}{\sqrt{16}} \\
& =\frac{11}{4}
\end{aligned}
$$

Step 3: Change the improper fraction to mixed fraction

$$
=2 \frac{3}{4}
$$

The correct answer is B
3. What is 25% as a fraction?
A $\frac{1}{5}$
B. $\frac{3}{4}$
C. $\frac{1}{2}$
D. $\frac{1}{4}$

Working

Step1: Express the percentage with 100 as a denominator.

$$
=\frac{25}{100}
$$

Step 2: Simplify

$$
=\frac{1}{4} \text { The correct answer is } \mathrm{D}
$$

4. What is the value of $\frac{1}{3}$ of $\left(\frac{1}{2}+\frac{1}{9}\right) \div \frac{1}{6}$
A. $\frac{11}{324}$
B. $\frac{1}{99}$
C. $1 \frac{2}{9}$
D. $\frac{4}{11}$

Working

Step 1: Using the order of operation, BODMAS, solve the brackets first.

$$
\begin{aligned}
\frac{1}{2}+\frac{1}{9} & =\frac{9+2}{18} \\
& =\frac{11}{18}
\end{aligned}
$$

Step 2: Open brackets and calculate 'of ‘

$$
\begin{aligned}
& =\frac{1}{3} \text { of }\left(\frac{11}{18}\right) \div \frac{1}{6} \\
& =\frac{1}{3} \text { of }\left(\frac{11}{18}\right) \div \frac{1}{6} \\
& =\frac{11}{54} \div \frac{1}{6}
\end{aligned}
$$

Step3: Calculate the division part

$$
\begin{aligned}
& =\frac{11}{54} \div \frac{1}{6} \\
& =\frac{11}{54} \times \frac{6}{1} \text { (multiply by the reciprocal of } \frac{1}{6}
\end{aligned}
$$

$$
=\frac{11}{9}
$$

Step 4: Change the improper fraction to mixed fraction.

$$
=1 \frac{2}{9}
$$

The correct answer is C.
5. The price of radio is Sh1800. The price was reduced by 15% during an auction. How much is the price after the reduction?
A. Sh270
B.Sh2070
C. $\operatorname{sh} 1530$
D. $\operatorname{sh} 1785$

Working
Marked price $\quad=$ Sh1800
Percentage decrease $=15 \%$
New price
85% of Sh 1800 ($100 \%-15 \%$)

$$
\begin{aligned}
& =\frac{85 \times 1800}{100} \\
& =\text { Sh } 1,530
\end{aligned}
$$

The correct answer is Sh 1530 (C)
6. In a certain year a tea factory produced 2500 tonnes of tea leaves. The following year the tonnes increased to 4000 . What is the percentage increase?
A. 160%
B. $62 \frac{1}{2} \%$
C. 60%
D $37 \frac{1}{2} \%$

Working

```
First year \(=2500\) tonnes
Second year \(=4000\) tonnes
Increase \(\quad=1500\) tonnes (4000-2500)
\(\% \quad\) Increase \(=\underline{\text { Increase }} \times 100\)
    Original
```

$$
\begin{aligned}
& =\left(\frac{1500}{2500} \times 100\right) \% \\
& =60 \%
\end{aligned}
$$

The correct answer is C (60\%)
7. What is the next number in the sequence below.
$6,10,19,35, \ldots .$.
A. 60
B. 84
C. 71
D51

Working

The next difference is $5^{2}=25$
The next number is $35+25=60$
The correct answer is A (60)

2. MEASUREMENTS

2.1 Objectives

Length, Perimeter and Area

Specific objectives:
a) Work out problems involving conversions of units of length
b) Work out problems involving perimeter and circumference.
c) Work out area of triangle, circles cuboids and quadrilaterals.
d) Work out surfaced area of cubes, cuboids and cylinders.

2.2 Worked Exercise

1. Tracy used a piece of wire $\quad \mathbf{8} \frac{\mathbf{1}}{2} \mathrm{~m}$ long to support tomato plants in the garden. The
wire was cut into pieces of 28 cm long. How many complete pieces were obtained?
A. 85
B. 30
C. 20
D 30.10

Working

$1 \mathrm{M}=100 \mathrm{~cm}$
$8 \frac{1}{2} \mathrm{~m}=$?
$\mathbf{8} \frac{\mathbf{1}}{\mathbf{2}} \times 100=850 \mathrm{~cm}$
1 piece $=28 \mathrm{~cm}$
$? \quad=850 \mathrm{~cm}$
$=\frac{850}{28}$
$=30$ complete pieces remainder 10 cm
2. The figure below represents a flower garden

What is the perimeter of the garden?
A. 25 m
B. 38.5 m
C. 11 m
D. 44 m

Working

$$
\begin{aligned}
\mathrm{P} & =\frac{1}{4} \Pi \mathrm{~d}+\mathrm{r}+\mathrm{r} \\
& =\left(\frac{1}{4} \times \frac{22}{7} \times 14\right)+(7+7) \\
& =11+14 \\
& =25 \mathrm{~m}
\end{aligned}
$$

The correct answer is A (25)
3. The parallel sides of a trapezium measure 10 cm by 18 cm respectively. If the distance between the parallel sides is 8 cm , what is the area of the trapezium in cm^{2} ?
A. 224
B. 112
C. 108
D. 84

Working

$$
\begin{aligned}
\text { Area of a trapezium } & =\frac{1}{2} \mathrm{~h}(\mathrm{a}+\mathrm{b}) \\
& =\frac{1}{2} \times 8 \times(10+18) \\
& =\frac{1}{2} \times 8 \times 28 \\
& =112 \mathrm{~cm}^{2}
\end{aligned}
$$

[^0]

What is the perimeter?
A. 0.526 m
B. 5.26 m
C. 52.6 m
D. 526 m

Working

Perimeter of semi-circle

$$
\begin{aligned}
& =\frac{1}{2} \pi \mathrm{~d} \quad \text { (Circumference only) } \\
& =\frac{1}{2} \times 2 \times \frac{22}{7} \times 7 \\
& =22 \mathrm{~m}
\end{aligned}
$$

To get $D C=\sqrt{ } 25-\sqrt{ } 16$

$$
=\sqrt{ } 9
$$

$$
=3 \mathrm{~m}
$$

Length $\mathrm{DE}=\mathrm{AB}-\mathrm{ED}$

$$
\begin{aligned}
& =12.8-7 \\
& =5.8 \mathrm{~m}
\end{aligned}
$$

Total length $12.8+5+3+5.8+22+4$

$$
=52.6 \mathrm{~m}
$$

The correct answer is (52.6)
5. What is the perimeter of the following shape?

A. 88 cm
B. 44 cm
C. 176 cm
D56cm

Working

$\mathrm{P}=$ circumference of a circle of radius 7 cm
$=2 \Pi \mathrm{r}$
$=2 \times \frac{22}{7} \times 7$
$=(44 \mathrm{~cm})$
6. The figure below shows a right angled triangle LMN in which $\mathrm{LM}=7.5 \mathrm{~cm}$ and $\mathrm{LN}=$ 19.5 cm

What is the area of the triangle in cm^{2} ?
A. 18
B. 67.5
C. 27
D. 34.5

Working

Apply Pythagoras relation in triangle LMN

LN^{2}	$=$	LM^{2}	+	NM^{2}
Nm^{2}		LN^{2}	-	LN^{2}
	$=$	19.5^{2}	-	7.5^{2}
	$=$	380.25	-	56.25
	$=$	324		
NM	$=$	$\sqrt{324}$		
	18 cm			

Area of triangle LMN

$$
\begin{aligned}
& =\frac{1}{2} \text { Base } \times \text { height } \\
& =\frac{1}{2} \times 18 \times 7.5 \\
& =67.5 \mathrm{~cm}^{2}
\end{aligned}
$$

The correct answer is $\mathrm{B}\left(67.5 \mathrm{~cm}^{2}\right)$
7. The area of a right-angled triangle is $84 \mathrm{~cm}^{2}$. If the height of the triangle is 7 cm , what is the length of the longest side?
A. 25 cm
B. 24 cm
C. 19 cm
D. 12 cm

Working

The Pythagoras relationship states that

H^{2}	$=\mathrm{b}^{2}+\mathrm{h}^{2}$
But Area	$=\frac{1}{2} \mathrm{bh}$
84	$=\frac{1}{2} \times \mathrm{b} \times 7$
84×2	$=7 \mathrm{~b}$
24	$=\mathrm{b}$
$\therefore \mathrm{H}^{2}$	$=24^{2}+7^{2}$
H^{2}	$=576+49$
H^{2}	$=625$
H	$=25$

Therefore the correct answer is 25 cm (A)
8. What is the surface area of an open cylinder whose radius is 6.3 cm and height of 25 cm .
A $114.74 \mathrm{~cm}^{2}$
B1239.48 cm^{2}
C $3118.50 \mathrm{~cm}^{2}$
D $619 \mathrm{~cm}^{2}$

Working

Total surface area $=\pi r^{2}+\pi \mathrm{dh}$

$$
\begin{aligned}
& =\quad\left(\frac{22}{7} \times 6.3 \times 6.3\right)+2 \times \frac{22}{7} \times 6.3 \times 25 \\
& =\quad 124.74+990 \\
& =\quad 1114.74 \mathrm{~cm}^{2}
\end{aligned}
$$

The correct answer is $1114.74 \mathrm{~cm}^{2}$ (A)
9. A Welder made a door with a design as shown below.

What is its area? (Take $\Pi=\frac{22}{7}$)
A. $15.12 \mathrm{~m}^{2}$
B. $12.04 \mathrm{~m}^{2}$
C $13.36 \mathrm{~m}^{2}$
D. $21.28 \mathrm{~m}^{2}$

Working

Area of the semi- circle	$=\frac{\frac{1}{2}}{2} \Pi \mathrm{r}^{2}$
	$=\frac{1}{2} \times \frac{22}{7} \times 1.4 \times 1.4$
	$=3.08 \mathrm{~m}^{2}$
Area of the rectangle	$=\mathrm{Lxw}$

$$
\begin{aligned}
& =\quad 3.2 \times 2.8 \\
& =\quad 8.96 \mathrm{~m}^{2} \\
& = \\
& = \\
& \\
& = \\
& (3.08+8 . \\
& 12.04 \mathrm{~m}^{2}
\end{aligned}
$$

$$
\text { Total area } \quad=\quad(3.08+8.96) \mathrm{m}^{2}
$$

The correct answer is B ($12.04 \mathrm{~m}^{2}$)
10. The diagram below represents a plot with a diameter of 28 meters.

The plot was fenced by erecting posts 4 m apart. How many posts were used? $\left(\Pi=\frac{22}{7}\right.$,
A. 12
B. 17
C. 18
D 19

Working

Perimet

$$
\begin{aligned}
& =\quad \frac{1}{2} \Pi d+d \\
& =\quad\left(\frac{1}{2} \times \frac{22}{7} \times 28+28\right) \\
& =\quad 72 \mathrm{~m}
\end{aligned}
$$

No of posts $\quad=\quad \underline{\text { Perimeter }}$ Interval
$=\frac{72}{4}$
$=\quad 18$ posts
The correct answer is C (18)

3. VOLUME, CAPACITY AND MASS

3.1 Specific Objectives

By the end of this unit, the learner should be able to:
a) Calculate the volume of cubes, cuboids, cylinders and triangular prisms.
b) Work out problems involving conversion of units of capacity to units of volumes and vice-versa.
c) Work out problems involving conversion of units of mass.

3.2 Worked Exercises

1. A Jerry can contains 5 litres of juice. This juice is used to fill 3 containers each of radius 7 cm and height of 10 cm . How many milliliters of juice are left in the jerry can?
A. 380
B. 480
C. 400
D. 420

Working

Volume of container:

$$
\begin{aligned}
& =\quad \operatorname{IIr}^{2} \mathrm{~h} \\
& =\quad \frac{22}{7} \times 7 \times 7 \times 10 \\
& =\quad 1540 \mathrm{~cm}^{3}
\end{aligned}
$$

Volume of 3 such containers

	$=(1540 \times 3) \mathrm{cm}^{3}$
	$=4620 \mathrm{~cm}^{3}$
Volume of juice in jerry can	$=(5 \times 1000)$
	$=5000 \mathrm{~cm}^{3}$
Volume of juice left	$=(5000-4620) \mathrm{cm}^{3}$
	$=380 \mathrm{~cm}^{3}$
	$=380 \mathrm{ml}$

The correct answer is A (380 ml)
2. The diagram below represents a solid whose dimensions are shown.

What is the volume in cm^{3} ?
A. 30000
B. 300000
C. 3000
D. 3000000

Working

Volume	$=$	
Area of the Cross-section \times length		
Volume of the top	$=$	$(20 \times 10 \times 150)$
	$=$	$30,000 \mathrm{~cm}^{3}$
Volume of the bottom	$=$	$60 \times 30 \times 150$
	$=$	$270,000 \mathrm{~cm}^{3}$
Whole solid	$=$	top + bottom
	$=$	$30,000+270,000$
	$=$	$300,000 \mathrm{~cm}^{3}$

The correct answer is $\quad B(300000)$
3. In the month of October, a farmer delivered 48750 kg of maize to a miller. In November the amount of maize delivered was 1850 kg more than that of October. The amount delivered in December was 2450 kg less than that of November. What was the total mass, in tonnes, was delivered by the farmer in the 3 months?
A. 145.65
B. 147.5
C.152.4
D. 150.55

Working

October	$=$	48750 kg
November	$=$	$(48750+1850) \mathrm{kg}$
	$=$	$50,600 \mathrm{~kg}$
December	$=$	$50,600-2,450) \mathrm{kg}$
	$=$	$48,150 \mathrm{~kg}$
Total mass	$=$	$48750+50600+48150$
	$=$	$(147500 / 1000)$ tonnes
		147.5 tonnes.

The correct answer is B (147.5)
4. A rectangular tank measures 1.2 m by 80 cm by 50 cm . water is poured into the tank to a height of 15 cm . How many more liters of water are needed to fill the tank?
A. 144
B.14.4
C.33.6
D. 336

Working

Capacity of the tank	$=$	$120 \times 80 \times 50$
	$=$	$480,000 \mathrm{~cm}^{3}$
Convert to litres	$=$	$\frac{480,000}{1000}$
	$=$	480 litres
	$=$	$120 \times 80 \times 50$
Volume of the water poured	$=$	$\left(144000 \mathrm{~cm}^{3}\right.$
	$=$	$144000)$
Convert to litres	$=$	$480-144$
Volume of water needed	$=$	$366 l i t r e s$.

The correct answer is D (366)
5. The diagram below represents a solid triangular prism.

What is the volume in cm^{3} ?
A. 2400
B. 2000
C. 5200
D. 576

Working

Apply Pythagorean relation in triangle ABC

$$
\begin{array}{rlr}
\mathrm{BC} & =\sqrt{26^{2}-10^{2}} \\
& =\sqrt{576} \\
& = & 24 \mathrm{~cm} \\
\text { Volume } & = & \text { Area of the Cross section } \times \text { length } \\
& = & \frac{1}{2} \times 24 \times 10 \times 20 \\
& = & 2400 \mathrm{~cm}^{3}
\end{array}
$$

The correct answer is A $\left(2400 \mathrm{~cm}^{3}\right)$
6. A cylindrical tank has a radius of 2 m and a height of 1.5 m . The tank was filled with water to a depth of 0.5 M . What is the volume of water in the tank, in litres? $(\Pi=3.14)$
A. 6280
B. 628
C. 9240
D. 18840

Working

Volume $=\Pi \mathrm{r}^{2} \mathrm{~h}$

$$
\begin{aligned}
& =3.14 \times 2 \times 2 \times 0.5 \\
& =6.28 \mathrm{~m}^{3} \\
\text { In litres } & =(6.28 \times 1000) \text { litres } \\
& =6280 \text { litres }
\end{aligned}
$$

The correct answer A (6280)
7. When processed, 7 kg of coffee beans produce 1 kg of processed coffee. Processed coffee is then packed in 50 kg bags. A farmer delivered 5.6 tonnes of coffee berries in one month. How many bags were obtained?
A. 12
B. 16
C. 40
D. 20

Working

Mass of coffee berries	$=5.6$ tonnes
	$=5.6 \times 1000$
	$=5600 \mathrm{~kg}$
Mass obtained	$=\frac{5600}{7}$
	$=800 \mathrm{~kg}$
Number of bags	$=800 \div 50$
	$=16$ bags

The correct answer is B (16)
8. A rectangular container whose base measures 40 cm by 60 cm has 30 liters of water when full. Find the height of the container in cm .
A. 0125
B 1.25
C. 12.5
D 125

Working

V	$=$	base area x height
Height	$=$	$\frac{\text { volume }}{\text { base area }}$

Volume	$=$	30 litres
	$=$	30×1000
	$=$	$30,000 \mathrm{~cm}^{3}$
Height	$=$	$\frac{30,000}{2400}$
		12.5 cm

The correct answer is C (12.5)
9. A shopkeeper had 43 litres sand 5 litres and 5 dl of paraffin. He packed all the paraffin in 7.5 dl-containers. How many containers did he fill?
A. 58
B. 5.8
C. 6
D. 60

Working

Convert decilitres into litres

1 dl	$=$	$\frac{1}{10} \quad$ litres
5 dl	$=$	$\frac{5}{10} \quad$ litres
7.5 dl	$=$	$\frac{7.5}{10}$ litres
	$=$	0.75 litres
Hence 43 litres 5 dl	$=$	43.5 litres
No of containers	$=$	$\underline{43.5}$
	$=$	58 containers

The correct answer is 58 (A)
10. The figure below shows a cylindrical solid of diameter 28 cm and length 20 cm . Asquare hole of side 1.5 cm has been removed. What is the volume of the material in the solid, in $3 \mathrm{~cm}^{3}$?
A. 12320
B. 4500
C 8400
D 7820

Working

$\begin{array}{rlrl}\text { Volume of solid } & =\quad \text { volume of a cylinder } & \text { volume of the square hole } \\ & \left.=\left(\frac{22}{7} \times 14 \times 14 \times 20\right)-15 \times 15 \times 20\right) \\ & =12320 & - & 4500 \\ & =7,820 \mathrm{~cm}^{3}\end{array}$
The correct answer is $\mathrm{D}\left(7,820 \mathrm{~cm}^{3}\right)$

4. MONEY

4.1 Specific Objectives

By the end of the unit, the learner should be able to:
a) Work out problems involving percentage profit and loss
b) Work out problems involving bills.
c) Solve problems involving discount, percentage, discount, commission and percentage commission
d) Work out problems involving hire purchase
e) Work out problems involving simple interest
f) Work out problems involving compound interest
g) Work out problems involving postal charges

4.2 Worked Exercise

1. Mutiso paid sh. 330 for an item after the shopkeeper gave him a 12% discount. What was the marked price of the radio?
A.sh300
B. $\operatorname{sh} 369.60$
C. $\operatorname{sh} 375$
D. $\operatorname{sh} 350$

Working

Marked price	$=$	100%
Discount	$=$	12%
S.P	$=$	$100 \%-12 \%$
	$=$	88%
\therefore If 88%	$=$	330
100%	$=$	$?$
$\frac{100 \times 300}{88}$	$=$	$\operatorname{Sh} 375$

The correct answer is C (375)
2. Olang' borrowed sh. 54000 from a bank which charged interest at the rate of 18% p.a. He repaid the whole loan after 8 months .How much did he pay back?
A sh6480
B. $\operatorname{sh} 60,480$
C.sh14580
D. $\operatorname{sh} 77760$

Working

I	$=\frac{\mathrm{PRT}}{100}$
	$=\quad \frac{54000 \times 18 \times 8}{100 \times 12}$
	$=$
Amount	$=$
	Ph 6480
	$=\quad(54,000+6,480)$ shillings
	Ksh 60,480

The correct answer is B
3. The cash price of a microwave is sh. 18000. The hire purchase price of the microwave is 20% more than the cash price. Bernice bought it on hire purchase terms by paying 40% of the hire purchase price as the deposit and the balance equal monthly installments of sh1620. How many installments did she pay?
A. 12
B. 10
C. 9
D. 8

Working

Let the cash price be 100%

Hire purchase	$=100 \%+20 \%$
	$=120 \%$ of the cash price
	$=\frac{120}{100} \times 1800$
	$=$ sh. 21,600
Deposit	$=40 \%$ of HPP
	$=\frac{40}{100} \times 21,600$
	$=$ sh.8, 640
HPP	$=D \quad$ MI

I

$$
\begin{aligned}
& =\frac{\mathrm{HPP}-\quad \mathrm{D}}{\mathrm{MI}} \\
& =\frac{21600-8640}{1620} \\
& =8 \text { Months }
\end{aligned}
$$

The correct answer is $\mathrm{D}(8)$
4. Salim deposited sh25000 in a bank which paid compound interest at the rate of 10% per annum. If he withdraws all his money af $\mathbf{1}_{\mathbf{1}}^{2}$ rears, how much interest did his money gain?
A. $\operatorname{sh} 5250$
B. $\operatorname{sh} 2500$
C. $\operatorname{sh} 1375$
D. $\operatorname{sh} 387$

Working

Interest for year 1

I	$=$	$\frac{\mathrm{PRT}}{100}$
	$=$	$\frac{25000 \times 10 \times 1}{100}$
	$=$	Sh 2500
Amount	$=$	$25000+2500$
	$=$	27,500

Interest for $2^{\text {nd }}$ year

I	$=\frac{\mathrm{PRT}}{100}$
	$=\frac{27,500 \times 10 \times 1 / 2}{100}$
	$=\operatorname{Sh} 13775$

Total interest $(2,500+1,375)$

$$
=\quad \operatorname{Sh} 3875
$$

The correct answer is D (Sh 3875)
5. Kamaru bought bananas in groups of 20 at $\operatorname{sh} 20$ per group. He grouped them into smaller groups of 5 bananas each and sold them at sh 10 per group. What percentage profit did he make?
A. 40%
B. 50%
C. 60%
D. 70%

Working

For every 20 bananas $=\operatorname{sh} 25$
One group produces 4 smaller groups of 5 bananas each
\therefore S.P $=4 \times 10$

$$
=\quad \operatorname{sh} 40
$$

B.P price $\quad=\quad \operatorname{sh} 25$

Profit $=40-25$
$=\quad \operatorname{sh} 15$
$\%$ profit $\quad=\quad \frac{\mathrm{P}}{\mathrm{BP}} \times 100$
$=60 \%$
The correct answer is $\mathrm{C}(60)$.
6. A shopkeeper bought 3 trays of eggs at sh 150 per tray. On the way to the shop, he realized 20% of the eggs were broken. He sold the rest at sh 72 per dozen. How much loss did he make?
A.sh450
B.sh432
C.sh18
D.sh28

Working

B.P for 3 trays	$=$	3×150
	$=$	$\operatorname{sh} 450$
Number of eggs	$=$	3×30
	$=$	90 eggs
20% eggs broke	$=$	$\frac{20}{100} \times 90$

Therefore remained		$=$	18 eggs broken	
		=	(90 -	18) eggs
1		$=$	72 eggs	
	dozen	$=$	12 eggs	
	?	$=$	72 eggs	
		$=$	6 dozens	
1	dozen	$=$	sh. 72	
6	dozens	$=$?	
Loss		$=$	B.P - S.P	
		$=$	450-432	
		$=$	sh18	

The correct answer is C (sh18)
7. A Salesperson earns a basic salary of sh7500 per month. He is also paid a 5% commission on all sales above sh30, 000 . In a certain month his total earnings were sh. 14250 . What was his total sales for that month?
A.sh135000
B.sh285000
C. $\operatorname{sh} 165000$
D.sh315000

Working

Commission	$=$	$\operatorname{sh} 14250 \quad \operatorname{sh} 7500$
	$=$	$\operatorname{sh} 6750$
$\therefore 5 \%$	$=$	$\operatorname{sh} 6750$
100%	$=$	$?$
	$=$	$\frac{100}{5} \times 6750$
	$=$	Sh. 135,000
Total sales	$=$	$(135,000+30,000)$
	$=$	$\operatorname{sh} 165000$

The correct answer is C (sh 165,000)
8. Shiku bought the following items from a shop

6kg of sugar @ sh45
$\frac{1}{2}$ of tea for $\operatorname{sh} 90$
3 kg of rice @ sh30
2 kg of fat @ sh70
If she used one thousand shillings to pay for the items, what balance did she receive?
A.sh410
B.sh455
C.sh590
D.sh765

Working

Shiku's Bill

Item	Sh	ct
6kg sugar @ sh45	270	00
$1 / 2$ kg tea for sh90	90	00
3kg rice @ sh30	90	00
2 kg fat @ sh70	140	00
Total	590	00

Total expenditure $=\operatorname{sh} 590$
Balance $\quad=\quad \operatorname{sh} 1000-\operatorname{sh} 590$
The correct answer is $=\operatorname{sh} 410$ (A)
9. Maranga paid sh4, 400 for a bicycle after he was given a 12% discount. James bought the same item from a different shop and was given a 15%. How much more than James did Maranga pay for the bicycle?
A.sh250
B. sh300
C. $\operatorname{sh} 750$
D. $\operatorname{sh} 150$

Working

Maranga B.P	$=$	$100 \%-12 \%$
	$=$	88%
$\therefore \frac{4400}{88} \times 100$	$=$	$\operatorname{sh} 5000$
James B.P	$=$	$100 \%-15 \%$
$\frac{85 \times 100}{4400}$	$=$	85%
How much more?	$=$	$\operatorname{sh} 4,250$
	$=$	$(5000-4250)$ shillings

The correct answer is C (750)
10. The table below shows postal charges for sending letters;

Mass of letter	Sh	ct
Up to 20 g	25	00
Over 20 g up to 50 g	30	00
Over 50 g up to 100 g	35	00
Over 100 g up to 250 g	50	00
Over 250 g up to 500 g	85	00
Over 500 g up to 1 kg	135	00
Over 1 kg up to 2 kg	190	00

Namu posted two letters each weighing 95 g and another one weighing 450 g . How much did he pay at the post office?
A. $\operatorname{sh} 120$
B. $\operatorname{sh} 135$
C. $\operatorname{sh} 155$
D. $\operatorname{sh} 240$

Working

Two letters
95g
Sh35.00
95 g
Sh35 00
Another $450 \mathrm{~g} \quad$ Sh85.00
sh 155.00
The correct answer is C (sh155)

5. TIME, SPEED AND TEMPERATURE

5.1 Specific Objectives

By the end of this unit, the learner should be able to:
a) Work out problems involving time, speed, distance and average speed.
b) Work out problems involving temperature in degree Celsius.

5.2 Worked Exercise

1. An airplane took $4 \frac{1}{2}$ hours to fly from Cairo to Zambia. If it landed in Nairobi at Nairobi at 0215 h on Saturday, when did it take off from Cairo?
A. Friday 2145 h
B. Saturday 2245 h
C. Friday 2245 h
D. Saturday 2145 h

Working

The time the aeroplane took from midnight to 0215 h of Saturday $=2 \mathrm{~h} 15 \mathrm{~min}$
The difference ($4 \mathrm{~h} 30 \mathrm{~min}-2 \mathrm{~h} 15 \mathrm{~min}$) is the time the aero plane took on Friday night.
Time on Friday night

h	min
4	30
-2	15
2	15

$=2 \mathrm{~h} 15 \mathrm{~min}$ before midnight
Time of takeoff from Cairo

h	\min
24	00
-2	15
21	45 on Friday

The correct answer is A (Friday 2145 h)
2. A train let Mombasa on Monday at 2125 h and took sixteen and half hours to reach Kisauni. When did the train reach Kisumu?
A. Tuesday 1.55 a.m
B. Tuesday $1.55 \mathrm{p} . \mathrm{m}$
C. Wednesday 1.55 p.m
D. Monday 1:55 a.m

Working

Monday: from 2125h to midnight $=\quad$ 2400h-2125h
$=\quad 2 \mathrm{~h} \quad 35 \mathrm{~min}$
Tuesday: Number of hours traveled from midnight

$$
\begin{array}{ll}
= & 16 \mathrm{~h} 30 \mathrm{~min}-2 \mathrm{~h} 35 \mathrm{~min} \\
= & 13 \mathrm{~h} \quad 55 \mathrm{~min}
\end{array}
$$

The train arrived at Kisumu on Tuesday at 1355 h
This is the same as $1.55 \mathrm{p} . \mathrm{m}$
The correct answer is B (Tuesday 1.55 pm)
3. A meeting started at quarter to noon. If the meeting lasted for 2 h 35 min , what time in 24 -h clock system did the meeting end?
A. 1320 h
B. 1420 h
C. 1310 h
D. 1410 h

Working

The meeting started at 11.45
Add the meeting time

$=$| h | \min |
| :---: | :---: |
| 11 | 45 |
| +2 | 35 |
| | |

The meeting ended at 1420 h
4. A wall clock gains 3 seconds every one hour. The clock was set correct at 1 pm on Tuesday. What time was it showing at 1 pm on Friday on the following week?

Working

The number of days from Tuesday 1 pm to Friday 1 pm the following week $=10$ days.
Number of hours $=(24 \times 10)=240$ hrs.
The clock gains 3 seconds after every hour in ten days.

$$
\begin{aligned}
240 \times 3 & =720 \text { seconds } \\
\operatorname{Min} & =\frac{720}{60} \\
& =12 \mathrm{~min}
\end{aligned}
$$

Hence it will show 1 p.m. +12 min

$$
=1.12 \mathrm{pm}
$$

In 24 h clock system

$$
=1312 \mathrm{~h}
$$

The correct answer is $\mathrm{B}(1312 \mathrm{~h})$
5. A cyclist traveled from Nairobi to Nyeri for 4 h 30 min at a speed of $80 \mathrm{~km} / \mathrm{h}$. He drove back to Nairobi taking 4 hours. What is his speed, in km / h ?
A. 90
B. 72
C. 80
D. 100

Working

Distance $=$ speed x time
$=\quad 80 \times 4 \frac{1}{2}$
$=\quad 360 \mathrm{~km}$

From Nyeri - Nairobi distance	$=360 \mathrm{~km}$	
Time taken	$=4 \mathrm{hrs}$	
Therefore speed	$=\frac{\text { Distance }}{\text { Time }}$	
	$=\frac{360}{4}$	
	$=$	$90 \mathrm{~km} / \mathrm{h}$

The correct answer is A ($90 \mathrm{~km} / \mathrm{hr}$)
6. A motorist crosses a bridge at a speed of $25 \mathrm{~m} / \mathrm{s}$. What is his speed in $\mathrm{km} / \mathrm{hr}$?
A. 80
B. 90
C. 60
D 30

Working

When working out this kind of question we use a relationship,

$$
\begin{aligned}
\text { If } 10 \mathrm{~m} / \mathrm{s} & =36 \mathrm{~km} / \mathrm{h} \\
25 \mathrm{~m} / \mathrm{s} & = \\
& =? \\
& =\left(\frac{25}{10} \times 36\right) \mathrm{km} / \mathrm{h} \\
& =90 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

The correct answer is B $(90 \mathrm{~km} / \mathrm{h})$
7. The distance between Mombasa and Mtito Andei is 290 km . A bus left Mombasa at 1035 h and traveled to Mtito Andei at a speed of $50 \mathrm{~km} / \mathrm{h}$. At what time did it arrive at Mtito Andei?
A. 1623 h
B. 1523 h
C. 1423 h
D. 1723 h

Working

The arrival time 1623 h
The correct answer is A (1623h)
8. Kamau drove from town M to town N a distance of 150 km . He started at 9.30 am and arrived at town N at 11.00 am . He stayed in town for one hour and 50 minutes. He drove back reaching town M at 2.30 pm . Calculate Kamau's average speed for the whole journey.
A. $90 \mathrm{~km} / \mathrm{h}$
B. $100 \mathrm{~km} / \mathrm{h}$
C. $60 \mathrm{~km} / \mathrm{h}$
D. $150 \mathrm{~km} / \mathrm{h}$

Working

Total distance from M to N and back

$$
\begin{array}{ll}
= & 150 \times 2 \\
= & 300 \mathrm{~km}
\end{array}
$$

Total time taken
From 9.30-11.00 $=\quad 1 \mathrm{~h} 30 \mathrm{~min}$
Time spent in town

$$
=\quad 1 \mathrm{~h} 50 \mathrm{~min}
$$

Time taken from N to M

$$
\begin{array}{ll}
= & 1430 \mathrm{~h}-1250 \mathrm{~h} \\
= & 1 \mathrm{~h} 40 \mathrm{~min}
\end{array}
$$

Total time $=\quad 5$ hours

Average speed $\quad=\quad$ Total distance
Total time taken
$=\frac{300}{5}$
$=\quad(60 \mathrm{~km} / \mathrm{h})$
The correct answer is $C(60 \mathrm{~km} / \mathrm{h})$
9. The temperature of an object was $20^{\circ} \mathrm{C}$ below the freezing point. It was warmed until there was a rise of 40° in temperature. What is the reading in the thermometer?
A. $60 \mathrm{C}^{\circ}$
B. $40 \mathrm{C}^{\circ}$
C. $20 \mathrm{C}^{\circ}$
D. $20 \mathrm{C}^{\circ}$

Working

Below freezing point means; - 20
Rose by 40°
Therefore $-20^{\circ}+40=20 \mathrm{C}$
The correct answer is $\mathrm{C}\left(20^{\circ} \mathrm{C}\right)$

6. GEOMETRY

6.1 Specific Objectives

By the end of this unit, the learner should be able to:
a) Construct triangles,
b) Construct circles touching the three sides of a triangle.
c) Work out problems using Pythagorean Theorem,
d) Construct of parallelogram and rhombuses,
e) Work out problems involving properties of square, rectangles, parallelograms, rhombuses and trapeziums and angles on straight lines,
f) Recognize and identify triangular and square based pyramids and
g) Identify nets of pyramids and prisms.

Worked Exercise

1. Find the value of x in the following.

Working

$\mathrm{X}+45+50=180^{\circ}$ (Angles on a straight lines are supplementary i.e. add up to 180°)
$\mathrm{X}+95=180^{0}$
$\mathrm{X}=85^{0}$
The value of $\underline{\underline{x}=85^{0}}$
2. Find the sum of angle " a " and angle "b" in the figure below.

Working

Lines AB and C D are transversals are Therefore $90+\mathrm{b}=180^{\circ}$

Therefore $\mathrm{b}=180-90$
$B=90^{\circ}$

Co-interior angles supplementally

Angle $\mathrm{a}=120^{\circ}$

- (Corresponding angles)

Therefore $\mathrm{a}=120^{\circ}$

Sum of a and b

$$
\begin{aligned}
& =120+90 \\
& =210^{\circ}
\end{aligned}
$$

3. Find the size of angle marked A B D in the figure below.

Working

$\mathrm{X}+4 \mathrm{x}+\mathrm{x}+30=180^{\circ} \quad$ (angles on a straight line are supplementary)
$=6 x+30=180$
$6 x=180-30$
$6 x=150$
$X=25$
Angle A B D $=x+4 X$
But $\mathrm{x}=25$
Therefore $25+(4 \times 25)$

$$
\begin{aligned}
& =25+100 \\
& =125^{\circ}
\end{aligned}
$$

4. Draw an equilateral triangle $A B C$ where Line $A B=6 \mathrm{~cm}$.

Draw a circle touching the 3 vertices of the triangle. What is the radius of the circle?

Working

Steps:
i) Draw line $\mathrm{AB}=6 \mathrm{~cm}$
ii) With A as the Centre with the same radius 6 cm , mark off an arc above line A B.
iii) With B as the Centre with the same radius 6 cm , mark off an arc above line A B to meet the arc in (II) above. Call the point of intersection point C
iv) Join C to A and C to B
v) Bisect line A B and B C and let the bisectors meet at point X .
vi) With X as the Centre, draw a circle passing through points A, B and C .
vii) Measure the radius of the circle.

5. Construct a triangle $P Q R$ in which $Q P=6 \mathrm{~cm} . Q R=4 \mathrm{~cm}$ and $P R=8 \mathrm{~cm}$. Draw a circle that touches the 3 sides of the triangle, measure the radius of the circle.

Working

i) Draw line Q P 6cm
ii) With Centre Q, make an arc 4 cm above line $Q P$.
iii) With Centre P, make an arc 8 cm above line Q P and let the arc meet the one in (II) above. Label the point of intersection as R .
iv) Join R to P and R to Q .
v) Bisect any two angles and let the bisectors meet at point Y .
vi) With Y as the Centre, draw a circle that touches the 3 sides of the triangle.

Construction

$\mathrm{R}=3.5 \mathrm{~cm}$
6. A rectangle measures 6 cm by $2 \frac{1}{2} \mathrm{~cm}$. What is the length of the diagonal?

Working

$$
\begin{aligned}
& \left.\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2} \quad \text { Pyythagoras Theorem }\right] \\
& \mathrm{AC}^{2}=6^{2}+2 \frac{1}{2} 2 \\
& \mathrm{AC}^{2}=36+6.25 \\
& \mathrm{AC}^{2}=42.25 \\
& \mathrm{AC}=\sqrt{42.25} \\
& \quad=6.5 \text { or } 6 \frac{1}{2}
\end{aligned}
$$

NB: The Pythagoras theorem states

$$
\begin{aligned}
& \mathrm{H}^{2}=\mathrm{B}^{2}+\mathrm{h}^{2} \\
& \mathrm{~h}^{2}=\mathrm{H}^{2}-\mathrm{b}^{2} \\
& \mathrm{~b}^{2}=\mathrm{H}^{2}-\mathrm{h}^{2}
\end{aligned}
$$

7. In the figure below, $A B C$ is a straight line and $B C D E$ is a quadrilateral. Angle CBD $=62^{\circ}$ and lines $\mathrm{EB}=\mathrm{BD}=\mathrm{DC}$. Line EB is parallel to DC .

What is the size of angle BDE?

Working

Consider triangle BCD (isosceles triangle)
Therefore base angles are equal

$$
\begin{aligned}
& \mathrm{CBD}=62^{0} \\
& \mathrm{BCD}=62^{0}
\end{aligned}
$$

Therefore, $\mathrm{BDC}=180-124$

$$
=56^{0}
$$

Angle CDB = angle EBD [Alternate triangle]
Therefore EBD $=56^{\circ}$
$\begin{aligned} \text { Angle BDE } & =\left(\frac{180-56}{2}\right)^{0} \\ & =62^{0}\end{aligned}$
Therefore, $\mathrm{BDE}=62^{\circ}$
8. Find the size of the largest angle from the following triangle.

Working

$$
\begin{aligned}
4 \mathrm{X}-10+\mathrm{x}-20+3 \mathrm{x}+10 & =180 \quad \text { [Angle sum of a triangle] } \\
8 \mathrm{x}-20 & =180 \\
8 \mathrm{x} & =200 \\
\mathrm{X} & =25
\end{aligned}
$$

$$
4 x-10
$$

$$
=(100-10)^{0}
$$

$$
=90^{\circ} \text { largest angle. }
$$

7. ALGEBRA

7.1 Specific Objectives

By the end of the unit, the learner should be able to:
a) Form and simplify algebraic expressions,
b) Work out the value of algebraic in one unknown and
c) Simplify inequalities in one unknown.

7.2 Worked Exercise

1 . What is the value of x in the equation?

$$
2(3 x-2)=3 x+8
$$

A. 12
B. $3 \frac{1}{3}$
C. 5
D. 4

Working

$$
2(3 x-2) \quad=\quad 3 x+8
$$

Step 1: Open brackets
$6 \mathrm{x}-4=3 x+8$

Step 2: Collect like terms and simplify

$6 \mathrm{x}-3 x$	$=$	$8+4$
$3 x$	$=$	12
x	$=$	4

The correct answer is D (4)
2. Francis has r shillings. John has s shillings. Ouma has sh. 150 less than the total money of both Francis and John. Which one of the following expressions gives the total amount of money do the three men have?
A. $2 r+2 s-150$
B. $r+s-150$
C. $2 r+2 s+300$
D. $r+s+300$

Working

Francis $=r$
John $=s$
Ouma $=r+s-150$
Total money $=r+s+r+s-150$

$$
=2 r+2 s-150
$$

The correct answer is $\mathrm{A}(2 r+2 s-150)$
3. If $x=2, y=z-x$ and $z=3$, What is the value of
$3 x-4 y+2 z$
$2(x+2 y-z)$
A. 8
B. 5
C. 7
D. 4

Working

Substitute the values of x, y, and z

$$
\begin{aligned}
& =\frac{(3 \times 2)-(4 \times 1)+(2 \times 3)}{2(2+2 \times 1-3)} \\
& =\frac{8}{2} \\
& =4
\end{aligned}
$$

The correct answer is D (4)
4. In a meeting there were 30 women than men and three times as many men as children.If there were 1,360 people altogether. What was the number of children in the meeting?
A. 220
B. 190
C. 600
D. 570

Working

Men $3 x$
Children x
Women $\quad 3 x+30$

$$
\text { Total } \begin{array}{rll}
7 x+30= & 1360 \\
7 x & = & 1360-30 \\
7 x & = & 1330 \\
x & = & 190
\end{array}
$$

Children are 190
The correct answer is B (190)
5. What is the value of p in the equation?
$\frac{3}{4}(8 p-4) \quad=\quad 4 p+7$
A. 2
B. 5
C. $5 \frac{1}{2}$
D. $2 \frac{3}{8}$

Working

$$
\begin{array}{rll}
\frac{3}{4}(8 p-4) & =4 p+7 \\
6 p-3 & =4 p+7 & \text { (opening brackets) } \\
6 p-4 p & =7+3 & \text { (collecting like terms) } \\
2 p & =10 & \\
p & =5 & \text { (Simplifying) }
\end{array}
$$

The correct answer is $B(5)$
6. Omammo is two years older than Temo and three years younger than Mbeti. The sum of their ages is 64 years. If Omamo's age is m, which of the following equations below can be used to find Omamo's age?
A. $3 m+1=64$
B. $3 m-1=64$
C. $3 m-5=64$
D. $3 m+5=64$

Working

Omamo	$=$	m
Temo	$=$	$m-2$
Mbeti	$=$	$m+3$

Total age $=64$
$\mathrm{X}+m-2+m+3=64$
$m+m+m-2+3=64$
$3 m+1=64$
The correct answer is $\mathrm{A}(3 m+1)=64$
7. What is the simplified form of $5 x+\frac{1}{4}(8 x-2 y)$
A. $37 x-8 y$
B. $7 x-\frac{1}{2 y}$
C. $28 x-2 y$
D. $7 x-2 y$

Working

$$
\begin{array}{ll}
5 x+\frac{1}{4}(8 x-2 y) & \text { open brackets } \\
5 x+2 x-\frac{1}{2} y & \text { simplify } \\
=7 x-\frac{1}{2} y &
\end{array}
$$

The correct answer is B $\left(7 x-\frac{1}{2} y\right)$

8. TABLES AND GRAPHS

8.1 Specific Objectives

By the end of the unit, the learner should be able to:
a) Draw tables and graphs,
b) Interpret tables and graphs,
c) Identify median as a middle value in a set of ordered data and
d) Work our problems involving mean, mode and median.

8.2 Worked Exercise

1. Kariet ole Koria started from his home at 8.00a.m to Narok, a distance of 140 km .

After covering 80 km he rested for 30 minutes before proceeding with the journey.

Koinet Ole Koria's Journey

Calculate Koinet Ole Koria's average speed for the whole journey in km / h

Working

Total distance $=140 \mathrm{~km}$
Total time taken $=3 \frac{1}{2} \mathrm{hrs}$
Average speed $=\quad \frac{\text { Distance covered }}{\text { Total time taken }}$
$=\quad \frac{140}{3 \frac{1}{2}}$
$=\quad 40 \mathrm{~km} / \mathrm{h}$
The correct answer is $\mathrm{D}(40 \mathrm{~km} / \mathrm{h})$
2. The graph shown below represents Kabugi's journey from Nairobi to Bungoma and back.

Kabugi's Journey

\qquad

What was his average speed for the whole journey?
A. $53 \frac{1}{3} \mathrm{~km} / \mathrm{h}$
B $50 \mathrm{~km} / \mathrm{h}$
C. $100 \mathrm{~km} / \mathrm{h}$
D $106 \frac{2}{3} \mathrm{~km} / \mathrm{h}$

Working

Total distance;

Nairobi - Bungoma	$=400 \mathrm{~km}$
Bungoma - Nairobi	$=400 \mathrm{~km}$
Total	$=800 \mathrm{~km}$
Total time	$=8$ hours

$$
\begin{aligned}
\text { Average Speed } & =\frac{\text { Total distance covered }}{\text { Total time taken }} \\
& =(800 \div 8) \mathrm{km} / \mathrm{h} \\
& =100 \mathrm{~km} / \mathrm{hr}
\end{aligned}
$$

The correct answer is C $(100 \mathrm{~km} / \mathrm{h})$
3. The pie chart shown below shows how Erastus spent his salary. How much did he spend on food and transport if he saved sh2500

A. Sh 4500
B. Sh 12000
C. Sh 2500
D. $\operatorname{Sh} 5000$

Working

The angle representing savings

$$
\begin{aligned}
\{360-(78+72+54+81)\} & =75^{\circ} \\
\text { If } 75^{\circ} & = \\
360^{\circ} & = \\
& =?\left(\frac{360 \times 2500)}{75}\right. \\
& =\quad \operatorname{Sh~} 12000 \\
\text { Food and transport } & = \\
& =134+81
\end{aligned}
$$

- (135 x 12000) Sh

360
$=\quad \operatorname{Sh} 4500$
The correct answer is A (Sh 4500)
4. Eleven standard 4 pupils of St. John school scored a test as follows 95, 50, 48, 63, 58, $75,48,44,58,84,48$. Which of the following a arrangements shows the mean, mode and median of the marks?
A. $58,61,48$
B. $61,48,58$
C. $61,58,48$
D. $48,58,61$

Working

Mean $\quad=\quad$ Total marks
No of children
$=671 \div 11$
$=\quad 61$ marks
Median: 44, 48, 48, 48, 50, 58, 58, 63, 75, 84, 95
The number in the middle is 58 .
Mode: is the number appearing many times.
The correct answer is B $(61,58,48)$
5. Njoroge scored as follow in a test.
$70,55,80,50,55$
What is his mean score?
A. 55
B. 62
C. 65
D 80

Working

Mean $\quad=\quad(70+55+80+55) \div 5$

9. SCALE DRAWING

9.1 Specific Objectives

By the end of this unit, the learner should be able to:
a) Reading and writing linear scale in ratio form.
b) Converting linear scale from statement form to ratio and from ratio to statement
c) Work out problems involving drawing.

9.2 Worked Exercise

1. The distance between two villages is 6.4 KM . On the map of the region this distance is represented by a line 1.6 cm long. What is the scale of the map?
A. 1: 400000
B. 1: 40000
C. 1: 4000
D. 1:4

Working

Actual distance $=6.4 \mathrm{~km}$
Drawing length $=1.6 \mathrm{~cm}$
1 cm on the map $=\frac{6.4}{1.6}$
$=4 \mathrm{~km}$ on the ground
But $1 \mathrm{~km}=(1000 \times 100) \mathrm{cm}$
$4 \mathrm{~km}=4 \times 1000 \times 100$
$=400000 \mathrm{~cm}$
Therefore scale $=1: 400000$
The correct answer is A $(1: 400000)$
2. A rectangular field measures 105 m . On a scale drawing of the field, the longer side is 7 cm . What is the measurement of the width on this scale drawing?
A. 5 cm
B. 50 cm
C. 500 cm
D. 7.35 cm

Working

7 cm represents $\quad 105 \mathrm{~m}$
1 cm represents $\quad(105 \div 7)$
Scale used,
1 cm represents $\quad 15 \mathrm{~m}$
$? \quad 75 \mathrm{~m}$

$=$	$\frac{(75 \times 1)}{15}$
$=$	5 cm

The correct answer is $5 \mathrm{~cm}(\mathrm{~A})$
3. The scale on a plan is $1: 20$. How many cm will represent 1 m on this plan?
A. 50 cm
B. 50 cm
C. 5 cm
D. $2 \frac{1}{2} \mathrm{~cm}$

Working

$1: 20$ scale means 1 cm on a drawing represents 20 cm on the ground.

1 cm	represents	20 cm
$?$		100 cm
	$=$	$\frac{100}{20}$
	$=$	5 cm

The correct answer is $\mathrm{C}(5 \mathrm{~cm})$
4. A rectangular field measuring 720 m by 550 m is to be represented on a scale drawing using the scale $1: 10,000$. What is the perimeter of the drawing in centimetres?
A. 0.254
B. 2.54
C. 25.4
D. 254

Working

1: 10000 means 1 cm on the map represents 10000 cm on the ground

$$
\begin{aligned}
& \text { •. If } 1 \mathrm{~cm}=10,0000 \mathrm{~cm} \\
& ? \quad=\quad 72,000 \mathrm{~cm} \\
& =\left(\frac{72.000}{10,000}\right) \mathrm{cm} \\
& =\quad 7.2 \mathrm{~cm} \\
& \text { If } 1 \mathrm{~cm} \quad=\quad 10,000 \mathrm{~cm} \\
& =55,000 \mathrm{~cm} \\
& =(\underline{55,000}) \mathrm{cm} \\
& \text { 10,000 } \\
& =5.5 \mathrm{~cm}
\end{aligned}
$$

Perimeter

The correct answer is (C)
5. The scale of a map is $1: 50000$. What is the length of this map of a road 20 km long?
A. 40 cm
B. 400 cm
C. 4000 cm
D. 4 cm

Working

Scale $\quad 1: 50000$ means 1 cm on the map represents 50000 cm on the ground.

$\therefore 20 \mathrm{~km}$	$=$	$20 \times 1000 \times 100$
	$=$	2000000 cm
$50,000 \mathrm{~cm}$ represents	$=$	1 cm
$2,000,000$ represents	$=$	$2,000,000 \div 50,000$
	$=$	40 cm

The correct answer is $\mathrm{A}(40 \mathrm{~cm})$

10. RATIO AND PROPORTION

10.1 Specific Objectives

By the end of the unit, the learner should be able to:
a) Work out problems involving ratio,
b) Work out problems involving simple direct and indirect proportions and
c) Compare using ratio.
d) Sharing using ratio
e) Increase and decrease quantities using ratio

10.2 Worked Exercise

1. Muraya and Dan each made 126kg of a mixture of maize and beans. Muraya mixed maize and beans in the ratio $4: 3$ while Dan mixed maize and beans in the ratio $4: 3$ while Dan mixed maize and beans in the ratio of 5:4. How many more kilograms?
A. 2
B. 3
C. 4
D. 6

Working

In Muraya's mixture, maize: beans		=	4:3
\therefore	maize	=	$\frac{\text { Ratio of maize }}{\text { Total ratio }} \times \text { No of } \mathrm{kg}$
		$=$	$\stackrel{4}{7} \mathrm{x} 126$
		$=$	72 kg
In Dan's mixture,	maize: beans	$=$	5: 4
	Maize	=	$\frac{\text { Ratio of maize }}{\text { Total ratio }} \times$ No of kg
		=	$\frac{5}{7} \times 126$
		=	70 kg
Difference		=	($72-70$) kg

$=\quad 2 \mathrm{~kg}$
The correct answer is A (2 kg)
2. A rectangular plot measures 12 m by 10 m . The length of the plot is increased in the ratio $3: 2$, while the width is decreased in the ratio $4 ; 5$. By what ratio is the area of the plot decreased?
A. 4:3
B. 5:4
C 6:5
D 3:2

Working

New length after increase
$\frac{3}{2} \times 12=18 \mathrm{~m}$
New width after decrease
$\frac{4}{5} \times 10 \quad=\quad 8 \mathrm{~m}$
Original area before the increase/decrease
$=(12 \times 10) \mathrm{m}^{2}$
$=120 \mathrm{~m}^{2}$
New area $\quad=\quad(18 \times 8) \mathrm{m}^{2}$
$=\quad 144 \mathrm{~m}^{2}$
New ratio $=144: 120$
$=6: 5$
The correct answer is C (6: 5).
3. Gladys keeps hens, ducks, and turkeys. The ratio of hens to ducks is $5: 2$. The number of turkeys is 35 less than the number of hens. How many turkeys are there if there are 30 ducks?
A. 105
B. 40
C. 75
D. 65

Working

| Hens : ducks | $=5: 2$ |
| :--- | :--- | :--- |
| Total ratio | $=7$ |

$$
\left.\begin{array}{ll}
\text { Ducks } & =\frac{2}{5} \\
\text { Hens } & =\frac{\mathbf{5}}{7} \text { of } x \\
\text { Therefore } \frac{2}{7} \text { of } x & =30 \\
& x \\
& =30 \times \frac{7}{2} \\
& x
\end{array}\right)=105 \text { (Total hens and ducks) }
$$

The correct answer is B (40)
4. Elijah and Paul shared some money in the ratio 5:8.Elijah got sh120 less than Paul. How much money did Paul get?
A. Sh520
B. Sh 320
C. Sh200
D. Sh 192

Working

Let the amount Paul got be t
Therefore Elijah got (t-120)

Therefore | $t-120: t$ | $=5: 8$ |
| ---: | :--- |
| $\frac{t-120}{t}$ | $=\frac{5}{8}$ |
| $8 t-960$ | $=5 \mathrm{t}$ |
| $8 t-5 t$ | $=960$ |
| $3 t$ | $=960$ |
| t | $=\operatorname{sh3} 30$ |

Therefore Paul got $=$ sh 320
The correct answer is $\mathrm{B}(\operatorname{sh} 320)$
5. A contractor employed 60 men to complete a piece of work in 150 days. How many more days would 50 men take to complete the same work?
A. 180
B. 30
C. 40
D. 50

Working

60 men take	150 days
1 man take	(150×60) days

Therefore 50 men will take $\left(\frac{150 \times 60}{50}\right)$ days $=180$ days

How many more? (180 - 150) days

$$
=30 \text { days }
$$

The correct answer is B (30 days)
6. Eighteen men can finish to dig a piece of land in 45 days. How many days would 15 men take to finish the same piece of land?
A. 54
B. 25
C. $7 \frac{1}{2}$
D. 9

Working

18 men take	45 days
1 man takes	(45×18) days
Therefore 15 men will take	$\frac{(45 \times 18)}{15}$
	$=54$ days

The correct answer is A (54 days)

[^0]: 4. The figure below shows vegetable garden.
